This paper describes the application of a nonconventional experimental technique based on optical interferometry for the characterization of aeroacoustic sources. The specific test case studied is a turbulent subsonic jet. Traditional experimental methods exploited for the measurement of aerodynamic velocity fields are laser Doppler anemometer and particle image velocimetry which have an important drawback due to the fact that they can measure only if the flow is seeded with tracer particles. The technique proposed, by exploiting a laser Doppler interferometer and a tomographic algorithm for 3D field reconstruction, overcomes the problem of the flow seeding since it allows directly measuring the flow pressure fluctuation due to the flow turbulence. A laser Doppler interferometer indeed is sensitive to the density oscillation within the medium traversed by the laser beam even though it integrates the density oscillation along the entire path traveled by the laser. Consequently, the 3D distribution of the flow density fluctuation can be recovered only by exploiting a tomographic reconstruction algorithm applied to several projections. Finally, the flow pressure fluctuation can be inferred from the flow density measured, which comprehends both the aerodynamic pressure related to the turbulence and the sound pressure due to the propagation of the acoustic waves into the far field. In relation to the test case studied in this paper, e.g., the turbulent subsonic jet, the method allows a complete aeroacoustic characterization of the flow field since it measures both the aerodynamic "cause" of the noise, such as the vortex shedding, and the acoustic "effect" of it, i.e., the sound propagation in the 3D space. The performances and the uncertainty have been evaluated and discussed, and the technique has been experimentally validated.

Subsonic jet pressure fluctuation characterization by tomographic laser interferometry

MARTARELLI, MILENA;
2013-01-01

Abstract

This paper describes the application of a nonconventional experimental technique based on optical interferometry for the characterization of aeroacoustic sources. The specific test case studied is a turbulent subsonic jet. Traditional experimental methods exploited for the measurement of aerodynamic velocity fields are laser Doppler anemometer and particle image velocimetry which have an important drawback due to the fact that they can measure only if the flow is seeded with tracer particles. The technique proposed, by exploiting a laser Doppler interferometer and a tomographic algorithm for 3D field reconstruction, overcomes the problem of the flow seeding since it allows directly measuring the flow pressure fluctuation due to the flow turbulence. A laser Doppler interferometer indeed is sensitive to the density oscillation within the medium traversed by the laser beam even though it integrates the density oscillation along the entire path traveled by the laser. Consequently, the 3D distribution of the flow density fluctuation can be recovered only by exploiting a tomographic reconstruction algorithm applied to several projections. Finally, the flow pressure fluctuation can be inferred from the flow density measured, which comprehends both the aerodynamic pressure related to the turbulence and the sound pressure due to the propagation of the acoustic waves into the far field. In relation to the test case studied in this paper, e.g., the turbulent subsonic jet, the method allows a complete aeroacoustic characterization of the flow field since it measures both the aerodynamic "cause" of the noise, such as the vortex shedding, and the acoustic "effect" of it, i.e., the sound propagation in the 3D space. The performances and the uncertainty have been evaluated and discussed, and the technique has been experimentally validated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/1935
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact