Product development is characterized by continuous updating of existing solutions in order to cope with new market requirements. Families of product variants are used to satisfy the needs of new potential customers and penetrate new market niches. New requirements impact on the structure of a product to be changed and also on the other instances of the family which share common parts. Several change management approaches have been proposed in the literature but they are limited to analysis of a single product instance. This paper proposes a dependency-based change propagation approach which is able to cope with engineering changes extended to product families. The proposed tool is based on a multilevel representation of the product structure, where functions, modules and physical parts are defined and interrelated. This system allows evaluating the consequences of engineering changes introduced in the family structure and computing indices of the impact on several design for X contexts. The tool was tested within the R&D department of a large sized company producing household appliances. Gather data are presented and analyzed to identify potentialities and shortcomings of the approach.
An approach for managing engineering changes in product families
RAFFAELI, ROBERTO;
2013-01-01
Abstract
Product development is characterized by continuous updating of existing solutions in order to cope with new market requirements. Families of product variants are used to satisfy the needs of new potential customers and penetrate new market niches. New requirements impact on the structure of a product to be changed and also on the other instances of the family which share common parts. Several change management approaches have been proposed in the literature but they are limited to analysis of a single product instance. This paper proposes a dependency-based change propagation approach which is able to cope with engineering changes extended to product families. The proposed tool is based on a multilevel representation of the product structure, where functions, modules and physical parts are defined and interrelated. This system allows evaluating the consequences of engineering changes introduced in the family structure and computing indices of the impact on several design for X contexts. The tool was tested within the R&D department of a large sized company producing household appliances. Gather data are presented and analyzed to identify potentialities and shortcomings of the approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.