Companies applying mass customization paradigm regard the design process as a configuration task where the solution is achieved through the extraction of a new instance from a modular product structure. In this context product configuration management tools are evermore important. Although tools have been already proposed, they fail in real industrial contexts. Main causes are recognizable in high efforts in systems implementation and lack of flexibility in products updating. This research aims to develop an approach to overcome drawbacks and simplify the implementation and the use of product configuration systems also in redesign activities. The paper initially reviews existing systems in terms of design knowledge representation methods and product structure formalization techniques. Then, an approach based on Configuration Virtual Prototypes which store and manage different levels of knowledge, is presented. In particular, a framework is outlined in order to represent design data and its formalization in configuration tools. Three different domains are managed and connected via Configuration Virtual Prototypes: Product Specifications, Geometrical Data and Product Knowledge. Specifically, geometrical data aspects are analyzed in detail providing approaches for eliciting knowledge introduced by parametric template CAD models. The approach will be exemplified through a real application example where an original tool has been developed on the based of the described method. Benefits of the system will be shown and briefly discussed, in particular in terms of reachable flexibility in solutions.
An Approach to Support the Implementation of Product Configuration Tools
RAFFAELI, ROBERTO;
2009-01-01
Abstract
Companies applying mass customization paradigm regard the design process as a configuration task where the solution is achieved through the extraction of a new instance from a modular product structure. In this context product configuration management tools are evermore important. Although tools have been already proposed, they fail in real industrial contexts. Main causes are recognizable in high efforts in systems implementation and lack of flexibility in products updating. This research aims to develop an approach to overcome drawbacks and simplify the implementation and the use of product configuration systems also in redesign activities. The paper initially reviews existing systems in terms of design knowledge representation methods and product structure formalization techniques. Then, an approach based on Configuration Virtual Prototypes which store and manage different levels of knowledge, is presented. In particular, a framework is outlined in order to represent design data and its formalization in configuration tools. Three different domains are managed and connected via Configuration Virtual Prototypes: Product Specifications, Geometrical Data and Product Knowledge. Specifically, geometrical data aspects are analyzed in detail providing approaches for eliciting knowledge introduced by parametric template CAD models. The approach will be exemplified through a real application example where an original tool has been developed on the based of the described method. Benefits of the system will be shown and briefly discussed, in particular in terms of reachable flexibility in solutions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.