In this study a theoretical and experimental investigation of the nonlinear response of an electrically actuated microbeam is performed. A mechanical model is proposed, which accounts for two common imperfections of microbeams, due to microfabrications, which are the compliant support conditions and the initially deformed profile. A computationally efficient single-mode reduced-order model is derived by combining the Ritz technique and the Padé approximation. Numerical simulations of the harmonic response of the device near primary resonance are shown illustrating nonlinear phenomena arising in the device response. Experimental investigation is conducted on a polysilicon imperfect microbeam confirming the simulation results. The concurrence between the theoretical results and the experimental data reveals that this model, while simple, is capable of properly capturing the response both at low and, especially, at higher electrodynamic voltages. © Owned by the authors, published by EDP Sciences, 2012.
Theoretical and experimental investigation of the nonlinear response of an electrically actuated imperfect microbeam
Ruzziconi L.;Lenci S.
2012-01-01
Abstract
In this study a theoretical and experimental investigation of the nonlinear response of an electrically actuated microbeam is performed. A mechanical model is proposed, which accounts for two common imperfections of microbeams, due to microfabrications, which are the compliant support conditions and the initially deformed profile. A computationally efficient single-mode reduced-order model is derived by combining the Ritz technique and the Padé approximation. Numerical simulations of the harmonic response of the device near primary resonance are shown illustrating nonlinear phenomena arising in the device response. Experimental investigation is conducted on a polysilicon imperfect microbeam confirming the simulation results. The concurrence between the theoretical results and the experimental data reveals that this model, while simple, is capable of properly capturing the response both at low and, especially, at higher electrodynamic voltages. © Owned by the authors, published by EDP Sciences, 2012.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.