In the last decade the increasing volatility of petroleum markets has challenged time series analysts to produce highly predictive models. Crude Oil is a major driver of the global economy and its price fluctuations are a key indicator for producers, consumers and investors. With investors following the longerterm upward trend in Energy prices Commodity investments, we believe this will drive an increasing importance for methodologies like neurofuzzy networks for risk quantification, measurement and management. The data used is Crude Oil prices for both Brent and WTI in the 10 year period from 2001 to 2010. We will prove that the neurofuzzy approach based on ANFIS networks compare favorably with respect to other standard and neural models and it is able to achieve useful performances in terms of accurate prediction of prices and their probability distribution. © 2013 IEEE.
A study on crude oil prices modeled by neurofuzzy networks
Liparulo, L.;
2013-01-01
Abstract
In the last decade the increasing volatility of petroleum markets has challenged time series analysts to produce highly predictive models. Crude Oil is a major driver of the global economy and its price fluctuations are a key indicator for producers, consumers and investors. With investors following the longerterm upward trend in Energy prices Commodity investments, we believe this will drive an increasing importance for methodologies like neurofuzzy networks for risk quantification, measurement and management. The data used is Crude Oil prices for both Brent and WTI in the 10 year period from 2001 to 2010. We will prove that the neurofuzzy approach based on ANFIS networks compare favorably with respect to other standard and neural models and it is able to achieve useful performances in terms of accurate prediction of prices and their probability distribution. © 2013 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.