In digital transformation, Industrial Data Space (IDS) is a key enabler for industry 4.0 to improve the industrial process, efficiency, and energy consumption by exploiting learning-based techniques. The present paper focuses on improving the decision-making process in complex industrial environments by developing a Deep Reinforcement Learning (DRL) based real-time assistant. Mainly, we address a use case from the space industry to improve the launcher throughput and efficiency and reduce cost by optimally managing the industrial resources. A mathematical formulation of the Industrial Production System (IPS) and a simulated environment are developed to train the DRL-based Proximal Policy Optimization (PPO) agent. The proposed method is scalable and in line with the dynamic nature of the industrial production systems to overcome the domain-dependent heuristics extensively used in the manufacturing industry. Furthermore, simulation results show that the proposed method can provide industrial operators and managers with a real-time decision support system to increase the Return on Assets.

Task Scheduling in Assembly Lines with Single-Agent Deep Reinforcement Learning

Di Giorgio A.;Tortorelli A.;Liberati F.
2023-01-01

Abstract

In digital transformation, Industrial Data Space (IDS) is a key enabler for industry 4.0 to improve the industrial process, efficiency, and energy consumption by exploiting learning-based techniques. The present paper focuses on improving the decision-making process in complex industrial environments by developing a Deep Reinforcement Learning (DRL) based real-time assistant. Mainly, we address a use case from the space industry to improve the launcher throughput and efficiency and reduce cost by optimally managing the industrial resources. A mathematical formulation of the Industrial Production System (IPS) and a simulated environment are developed to train the DRL-based Proximal Policy Optimization (PPO) agent. The proposed method is scalable and in line with the dynamic nature of the industrial production systems to overcome the domain-dependent heuristics extensively used in the manufacturing industry. Furthermore, simulation results show that the proposed method can provide industrial operators and managers with a real-time decision support system to increase the Return on Assets.
2023
979-8-3503-1140-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/65455
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact