Entity Resolution (ER) is the task of finding records that refer to the same real-world entity, which are called matches. ER is a fundamental pre-processing step when dealing with dirty and/or heterogeneous datasets; however, it can be very time-consuming when employing complex machine learning models to detect matches, as state-of-the-art ER methods do. Thus, when time is a critical component and having a partial ER result is better than having no result at all, progressive ER methods are employed to try to maximize the number of detected matches as a function of time. In this paper, we study how to perform progressive ER by exploiting graph embeddings. The basic idea is to represent candidate matches in a graph: each node is a record and each edge is a possible comparison to check—we build that on top of a well-known, established graph-based ER framework. We experimentally show that our method performs better than existing state-of-the-art progressive ER methods on real-world benchmark datasets.

Progressive Entity Resolution with Node Embeddings

Gagliardelli, Luca;
2022-01-01

Abstract

Entity Resolution (ER) is the task of finding records that refer to the same real-world entity, which are called matches. ER is a fundamental pre-processing step when dealing with dirty and/or heterogeneous datasets; however, it can be very time-consuming when employing complex machine learning models to detect matches, as state-of-the-art ER methods do. Thus, when time is a critical component and having a partial ER result is better than having no result at all, progressive ER methods are employed to try to maximize the number of detected matches as a function of time. In this paper, we study how to perform progressive ER by exploiting graph embeddings. The basic idea is to represent candidate matches in a graph: each node is a record and each edge is a possible comparison to check—we build that on top of a well-known, established graph-based ER framework. We experimentally show that our method performs better than existing state-of-the-art progressive ER methods on real-world benchmark datasets.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/69797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact