This paper addresses the problem of sensor fault detection for a wide class of Unmanned Vehicles (UVs). First a general model for UVs, based on the dynamics of a 6 Degrees Of Freedom (6-DOF) rigid body, subject to gravity and actuation forces, is presented. This model is shown to satisfy the necessary conditions to the existence of a non-linear observer (Thau) when proper assumptions for the actuation forces are made. The observer can thus be used to generate diagnostic residuals inside a Fault Detection (FD) system. Finally, the proposed approach is customized for sensor fault detection on an unmanned quad-rotor vehicle, and simulation results show the effectiveness of the adopted solution.

A Diagnostic Thau Observer for a Class of Unmanned Vehicles

FREDDI, ALESSANDRO;
2012-01-01

Abstract

This paper addresses the problem of sensor fault detection for a wide class of Unmanned Vehicles (UVs). First a general model for UVs, based on the dynamics of a 6 Degrees Of Freedom (6-DOF) rigid body, subject to gravity and actuation forces, is presented. This model is shown to satisfy the necessary conditions to the existence of a non-linear observer (Thau) when proper assumptions for the actuation forces are made. The observer can thus be used to generate diagnostic residuals inside a Fault Detection (FD) system. Finally, the proposed approach is customized for sensor fault detection on an unmanned quad-rotor vehicle, and simulation results show the effectiveness of the adopted solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/10429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 46
social impact