A metal-free catalytic system consisting of an aldehyde and N-hydroxyphthalimide (NHPI) for the selective oxidation of tertiary alkylaromatics with molecular oxygen has been developed. Cumene was oxidized efficiently to the corresponding hydroperoxide under mild conditions. The molecule-induced homolysis between peracids generated in situ and NHPI ensured the formation of the phthalimide N-oxyl (PINO) radical even at room temperature. Investigations on aldehyde, solvent and temperature effects allowed us to achieve good conversions with high selectivity in hydroperoxide. The optimized procedure was successfully extended to phenylcyclohexane, a valuable alternative for the production of phenol. The mechanism is discussed in detail.

Hydroperoxidation of Tertiary Alkylaromatics Catalyzed By N-Hydroxyphthalimide and Aldehydes under Mild Conditions

MELONE, LUCIO;
2011-01-01

Abstract

A metal-free catalytic system consisting of an aldehyde and N-hydroxyphthalimide (NHPI) for the selective oxidation of tertiary alkylaromatics with molecular oxygen has been developed. Cumene was oxidized efficiently to the corresponding hydroperoxide under mild conditions. The molecule-induced homolysis between peracids generated in situ and NHPI ensured the formation of the phthalimide N-oxyl (PINO) radical even at room temperature. Investigations on aldehyde, solvent and temperature effects allowed us to achieve good conversions with high selectivity in hydroperoxide. The optimized procedure was successfully extended to phenylcyclohexane, a valuable alternative for the production of phenol. The mechanism is discussed in detail.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/10538
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact