A unified phase-field continuum theory is developed for transition and separation phenomena. A nonlocal formulation of the second law which involves an extra-entropy flux gives the basis of the thermodynamic approach. The phase-field is regarded as an additional variable related to some phase concentration, and its evolution is ruled by a balance equation, where flux and source terms are (unknown) constitutive functions. This evolution equation reduces to an equation of the rate-type when the flux is negligible, and it takes the form of a diffusion equation when the source term is disregarded. On this background, a general model for first-order transition and separation processes in a compressible fluid or fluid mixture is developed. Upon some simplifications, we apply it to the liquid-vapor phase change induced either by temperature or by pressure and we derive the expression of the vapor pressure curve. Taking into account the flux term, the sign of the diffusivity is discusssed.

Mathematical modeling of phase transition and separation in fluids: a unified approach

BERTI, ALESSIA;
2014-01-01

Abstract

A unified phase-field continuum theory is developed for transition and separation phenomena. A nonlocal formulation of the second law which involves an extra-entropy flux gives the basis of the thermodynamic approach. The phase-field is regarded as an additional variable related to some phase concentration, and its evolution is ruled by a balance equation, where flux and source terms are (unknown) constitutive functions. This evolution equation reduces to an equation of the rate-type when the flux is negligible, and it takes the form of a diffusion equation when the source term is disregarded. On this background, a general model for first-order transition and separation processes in a compressible fluid or fluid mixture is developed. Upon some simplifications, we apply it to the liquid-vapor phase change induced either by temperature or by pressure and we derive the expression of the vapor pressure curve. Taking into account the flux term, the sign of the diffusivity is discusssed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/11781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact