We provide a simple algorithm which produces a (branched) standard spine of a 3-manifold presented by surgery along a framed link in S^3, giving an explicit upper bound on the complexity of the spine in terms of the complexity of a diagram of the link. As a corollary, we get an easy constructive proof of Casler’s result on the existence of a standard spine for a closed 3-manifold. We also describe an o-graph which represents the spine.

An algorithm producing a standard spine of a 3-manifold presented by surgery along a link

AMENDOLA, GENNARO
2002-01-01

Abstract

We provide a simple algorithm which produces a (branched) standard spine of a 3-manifold presented by surgery along a framed link in S^3, giving an explicit upper bound on the complexity of the spine in terms of the complexity of a diagram of the link. As a corollary, we get an easy constructive proof of Casler’s result on the existence of a standard spine for a closed 3-manifold. We also describe an o-graph which represents the spine.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/1318
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact