In this paper we present a mathematical model to describe the phenomenon of phase separation, which is modelled as space regions where an order parameter changes smoothly. The model proposed, including thermal and mixing effects, is deduced for an incompressible fluid, so the resulting differential system couples a generalized Cahn-Hilliard equation with the Navier-Stokes equation. Its consistency with the second law of thermodynamics in the classical Clausius-Duhem form is finally proved.

A mathematical model for phase separation: a generalized Cahn-Hilliard equation

BERTI, ALESSIA;
2011-01-01

Abstract

In this paper we present a mathematical model to describe the phenomenon of phase separation, which is modelled as space regions where an order parameter changes smoothly. The model proposed, including thermal and mixing effects, is deduced for an incompressible fluid, so the resulting differential system couples a generalized Cahn-Hilliard equation with the Navier-Stokes equation. Its consistency with the second law of thermodynamics in the classical Clausius-Duhem form is finally proved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/1413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact