We provide a local calculus for the presentation of closed 3–manifolds via nullhomotopic filling Dehn spheres. We use it to define an invariant of closed 3–manifolds by applying the state-sum machinery, and we show how to potentially get lower bounds for the Matveev complexity of P^2-irreducible closed 3–manifolds. We also describe an efficient and simple algorithm for constructing a nullhomotopic filling Dehn sphere of each closed 3–manifold from any of its one-vertex triangulations.

A local calculus for nullhomotopic filling Dehn spheres

AMENDOLA, GENNARO
2009-01-01

Abstract

We provide a local calculus for the presentation of closed 3–manifolds via nullhomotopic filling Dehn spheres. We use it to define an invariant of closed 3–manifolds by applying the state-sum machinery, and we show how to potentially get lower bounds for the Matveev complexity of P^2-irreducible closed 3–manifolds. We also describe an efficient and simple algorithm for constructing a nullhomotopic filling Dehn sphere of each closed 3–manifold from any of its one-vertex triangulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/1487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact