Refining the notion of an ideal triangulation of a compact three-manifold, we provide in this paper a combinatorial presentation of the set of pairs (M,alpha), where M is a three-manifold and alpha is a collection of properly embedded arcs. We also show that certain well-understood combinatorial moves are sufficient to relate to each other any two refined triangulations representing the same (M,alpha). Our proof does not assume the Matveev-Piergallini calculus for ideal triangulations, and actually easily implies this calculus.

A calculus for ideal triangulations of three-manifolds with embedded arcs

AMENDOLA, GENNARO
2005

Abstract

Refining the notion of an ideal triangulation of a compact three-manifold, we provide in this paper a combinatorial presentation of the set of pairs (M,alpha), where M is a three-manifold and alpha is a collection of properly embedded arcs. We also show that certain well-understood combinatorial moves are sufficient to relate to each other any two refined triangulations representing the same (M,alpha). Our proof does not assume the Matveev-Piergallini calculus for ideal triangulations, and actually easily implies this calculus.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/1676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact