A recently built experimental setup was employed for the estimation of the solid-liquid equilibria (SLE) of alternative refrigerant systems. The behavior of two binaries, that is, carbon dioxide + fluoromethane (CO2 + R41) and nitrous oxide + fluoromethane (N2O + R41), was measured down to temperatures of 126.5 K. To confirm the reliability of the apparatus, the triple points of the pure fluids constituent of the binary systems were measured. All triple-point data measured revealed a generally good consistency with the literature. The results obtained for the mixtures were corrected by the Rossini method and interpreted by means of the Schröder equation. © 2010 American Chemical Society.
Carbon dioxide + fluoromethane and nitrous oxide + fluoromethane: Solid-liquid equilibria measurements
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
MOGLIE, MATTEOWriting – Review & Editing
;SANTORI, GIULIOWriting – Review & Editing
;
	
		
		
	
			2010-01-01
Abstract
A recently built experimental setup was employed for the estimation of the solid-liquid equilibria (SLE) of alternative refrigerant systems. The behavior of two binaries, that is, carbon dioxide + fluoromethane (CO2 + R41) and nitrous oxide + fluoromethane (N2O + R41), was measured down to temperatures of 126.5 K. To confirm the reliability of the apparatus, the triple points of the pure fluids constituent of the binary systems were measured. All triple-point data measured revealed a generally good consistency with the literature. The results obtained for the mixtures were corrected by the Rossini method and interpreted by means of the Schröder equation. © 2010 American Chemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


