Adsorbent sponges for water remediation were prepared using TEMPO-oxidized cellulose nanofibers (TOCNFs) as three-dimensional scaffolds, and branched polyethyleneimine (bPEI, 25 KDa) as the cross-linking agent. TOCNFs were suspended in aqueous solution in the presence of variable amounts of bPEI. The mixtures were first freeze-dried and then thermally treated (from 60 to 102 °C over 10 h) promoting the formation of amide bonds between the carboxylic groups of TOCNF and the primary amines of bPEI. The resulting materials, which were characterized by FTIR and 13C CP-MAS NMR spectroscopy, scanning electron microscopy, and elemental analysis, showed higher chemical and mechanical stability in water than non-reticulated cellulose composites. The high adsorption capability of the new sponges was verified for different organic pollutants (p-nitrophenol, 2,4,5-trichlorophenol, and amoxicillin), and heavy metal ion pollutants (Cu, Co, Ni, Cd), indicating their potential for water decontamination.

TEMPO-Oxidized Cellulose Cross-Linked with Branched Polyethyleneimine: Nanostructured Adsorbent Sponges for Water Remediation

MELONE, LUCIO;
2015-01-01

Abstract

Adsorbent sponges for water remediation were prepared using TEMPO-oxidized cellulose nanofibers (TOCNFs) as three-dimensional scaffolds, and branched polyethyleneimine (bPEI, 25 KDa) as the cross-linking agent. TOCNFs were suspended in aqueous solution in the presence of variable amounts of bPEI. The mixtures were first freeze-dried and then thermally treated (from 60 to 102 °C over 10 h) promoting the formation of amide bonds between the carboxylic groups of TOCNF and the primary amines of bPEI. The resulting materials, which were characterized by FTIR and 13C CP-MAS NMR spectroscopy, scanning electron microscopy, and elemental analysis, showed higher chemical and mechanical stability in water than non-reticulated cellulose composites. The high adsorption capability of the new sponges was verified for different organic pollutants (p-nitrophenol, 2,4,5-trichlorophenol, and amoxicillin), and heavy metal ion pollutants (Cu, Co, Ni, Cd), indicating their potential for water decontamination.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/17384
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 78
social impact