We consider homotopy classes of non-singular vector fields on three-manifolds with boundary and we define for these classes torsion invariants of Reidemeister type. We show that torsion is well-defined and equivariant under the action of the appropriate homology group using an elementary and self-contained technique. Namely, we use the theory of branched standard spines to express the difference between two homotopy classes as a combination of well-understood elementary catastrophes. As a special case we are able to reproduce Turaev???s theory of Reidemeister torsion for Euler structures on closed manifolds of dimension three.

Branched Spines of 3-Manifolds and Reidemeister Torsion of Euler Structures

AMENDOLA, GENNARO;
2001

Abstract

We consider homotopy classes of non-singular vector fields on three-manifolds with boundary and we define for these classes torsion invariants of Reidemeister type. We show that torsion is well-defined and equivariant under the action of the appropriate homology group using an elementary and self-contained technique. Namely, we use the theory of branched standard spines to express the difference between two homotopy classes as a combination of well-understood elementary catastrophes. As a special case we are able to reproduce Turaev???s theory of Reidemeister torsion for Euler structures on closed manifolds of dimension three.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/199
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact