Major depression (MD) and bipolar disorder (BD) are severe and potentially life-threating mood disorders whose etiology is to date not completely understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein synthesis post-transcriptionally by base-pairing to target gene mRNAs. Growing evidence indicated that miRNAs might play a key role in the pathogenesis of neuropsychiatric disorders and in the action of psychotropic drugs. On these bases, in this study we evaluated the expression levels of 1733 mature miRNAs annotated in miRBase v.17, through a microarray technique, in the blood of 20 MD and 20 BD patients and 20 healthy controls, in order to identify putative miRNA signatures associated with mood disorders. We found that 5 miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p, hsa-miR-24-3p and hsa-miR-425-3p) were specifically altered in MD patients and 5 (hsa-miR-140-3p, hsa-miR-30d-5p, hsa-miR-330-5p, hsa-miR-378a-5p and hsa-miR-21-3p) in BD patients, whereas 2 miRNAs (hsa-miR-330-3p and hsa-miR-345-5p) were dysregulated in both the diseases. The bioinformatic prediction of the genes targeted by the altered miRNAs revealed the possible involvement of neural pathways relevant for psychiatric disorders. In conclusion, the observed results indicate a dysregulation of miRNA blood expression in mood disorders and could indicate new avenues for a better understanding of their pathogenetic mechanisms. The identified alterations may represent potential peripheral biomarkers to be complemented with other clinical and biological features for the improvement of diagnostic accuracy.
Peripheral whole blood microRNA alterations in major depression and bipolar disorder
MAFFIOLETTI, ELISABETTA;TARDITO, DANIELA;BOCCHIO CHIAVETTO, LUISELLA
2016-01-01
Abstract
Major depression (MD) and bipolar disorder (BD) are severe and potentially life-threating mood disorders whose etiology is to date not completely understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein synthesis post-transcriptionally by base-pairing to target gene mRNAs. Growing evidence indicated that miRNAs might play a key role in the pathogenesis of neuropsychiatric disorders and in the action of psychotropic drugs. On these bases, in this study we evaluated the expression levels of 1733 mature miRNAs annotated in miRBase v.17, through a microarray technique, in the blood of 20 MD and 20 BD patients and 20 healthy controls, in order to identify putative miRNA signatures associated with mood disorders. We found that 5 miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p, hsa-miR-24-3p and hsa-miR-425-3p) were specifically altered in MD patients and 5 (hsa-miR-140-3p, hsa-miR-30d-5p, hsa-miR-330-5p, hsa-miR-378a-5p and hsa-miR-21-3p) in BD patients, whereas 2 miRNAs (hsa-miR-330-3p and hsa-miR-345-5p) were dysregulated in both the diseases. The bioinformatic prediction of the genes targeted by the altered miRNAs revealed the possible involvement of neural pathways relevant for psychiatric disorders. In conclusion, the observed results indicate a dysregulation of miRNA blood expression in mood disorders and could indicate new avenues for a better understanding of their pathogenetic mechanisms. The identified alterations may represent potential peripheral biomarkers to be complemented with other clinical and biological features for the improvement of diagnostic accuracy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.