In this work, the effects of coupled hydromechanical (consolidation) processes associated with shield tunneling excavation in soft clays are investigated with particular attention to the prediction of ground movements at the ground surface. A series of 2d FE analyses have been carried out in parametric form in order to investigate the effects of tunnel excavation velocity relative to the soil consolidation rate and the hydraulic boundary conditions at the tunnel boundary. The shield advancement process has been simulated with a simplified procedure incorporating both volume loss and ovalization of the tunnel section. In order to investigate the relative importance of soil consolidation during the excavation process, different characteristic times for the tunnel face advancement and for the consolidation process around the tunnel have been considered, for the two limiting conditions of fully permeable liner and impervious liner. The potential damage induced by the tunnel excavation on existing structures, based on computed ground surface distortions and horizontal deformations, has been found to vary significantly with time during the consolidation process. The results of the simulations allowed to obtain useful information on the minimum tunnel face advancement speed for which the assumption of fully undrained conditions for the soil during the excavations is acceptable, as well as on the speed range

Time-dependent ground movements induced by shield tunneling in soft clay: a parametric study

CATTONI, ELISABETTA;
2016-01-01

Abstract

In this work, the effects of coupled hydromechanical (consolidation) processes associated with shield tunneling excavation in soft clays are investigated with particular attention to the prediction of ground movements at the ground surface. A series of 2d FE analyses have been carried out in parametric form in order to investigate the effects of tunnel excavation velocity relative to the soil consolidation rate and the hydraulic boundary conditions at the tunnel boundary. The shield advancement process has been simulated with a simplified procedure incorporating both volume loss and ovalization of the tunnel section. In order to investigate the relative importance of soil consolidation during the excavation process, different characteristic times for the tunnel face advancement and for the consolidation process around the tunnel have been considered, for the two limiting conditions of fully permeable liner and impervious liner. The potential damage induced by the tunnel excavation on existing structures, based on computed ground surface distortions and horizontal deformations, has been found to vary significantly with time during the consolidation process. The results of the simulations allowed to obtain useful information on the minimum tunnel face advancement speed for which the assumption of fully undrained conditions for the soil during the excavations is acceptable, as well as on the speed range
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/20569
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 20
social impact