We propose a three-phase matheuristic, combining an exact method with a Variable Neighborhood Search local Branching (VNSB) to route a fleet of Electric Vehicles (EVs). EVs are allowed stopping at the recharging stations along their routes to (also partially) recharge their batteries. We hierarchically minimize the number of EVs used and the total time spent by the EVs, i.e., travel times, charging times and waiting times (due to the customer time windows). The first two phases are based on Mixed Integer Linear Programs to generate feasible solutions, used in a VNSB algorithm. Numerical results on benchmark instances show that the proposed approach finds good quality solutions in reasonable amount of time.
A Three-Phase Matheuristic for the Time-Effective Electric Vehicle Routing Problem with Partial Recharges
PISACANE, ORNELLA;
2016-01-01
Abstract
We propose a three-phase matheuristic, combining an exact method with a Variable Neighborhood Search local Branching (VNSB) to route a fleet of Electric Vehicles (EVs). EVs are allowed stopping at the recharging stations along their routes to (also partially) recharge their batteries. We hierarchically minimize the number of EVs used and the total time spent by the EVs, i.e., travel times, charging times and waiting times (due to the customer time windows). The first two phases are based on Mixed Integer Linear Programs to generate feasible solutions, used in a VNSB algorithm. Numerical results on benchmark instances show that the proposed approach finds good quality solutions in reasonable amount of time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.