Several brain-imaging and lesion studies have suggested a role for the posterior parietal cortex (PPC) in computing interval-timing tasks. PPC also seems to have a key role in modulating visuospatial mechanisms, which are known to affect temporal performance. By applying transcranial direct current stimulation (tDCS) over the left and right PPC, we aimed to modulate timing ability performance in healthy humans performing a cognitively controlled timing task. In two separate experiments we compared time-processing abilities of two groups of healthy adults submitted to anodal, cathodal or sham tDCS over right or left PPC, by employing a supra-second time reproduction task. Cathodal stimulation over the right PPC affected temporal accuracy by leading participants to overestimate time intervals. Moreover, when applied to the left PPC, it reduced variability in reproducing temporal intervals. No effect was reported for anodal stimulation. These results expand current knowledge on the role of the parietal cortex on temporal processing. We provide evidence that the parietal cortex of both hemispheres is involved in temporal processing by acting on distinct components of timing performance such as accuracy and variability.
Temporal accuracy and variability in the left and right posterior parietal cortex
Koch, G
2013-01-01
Abstract
Several brain-imaging and lesion studies have suggested a role for the posterior parietal cortex (PPC) in computing interval-timing tasks. PPC also seems to have a key role in modulating visuospatial mechanisms, which are known to affect temporal performance. By applying transcranial direct current stimulation (tDCS) over the left and right PPC, we aimed to modulate timing ability performance in healthy humans performing a cognitively controlled timing task. In two separate experiments we compared time-processing abilities of two groups of healthy adults submitted to anodal, cathodal or sham tDCS over right or left PPC, by employing a supra-second time reproduction task. Cathodal stimulation over the right PPC affected temporal accuracy by leading participants to overestimate time intervals. Moreover, when applied to the left PPC, it reduced variability in reproducing temporal intervals. No effect was reported for anodal stimulation. These results expand current knowledge on the role of the parietal cortex on temporal processing. We provide evidence that the parietal cortex of both hemispheres is involved in temporal processing by acting on distinct components of timing performance such as accuracy and variability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.