Carbon capture and storage is considered an effective mitigation strategy to reduce the most challenging emissions from heavy industries and gas processing. The safe transport of carbon dioxide via pipelines is an important aspect for developing large-scale Carbon Capture and Storage projects. Dispersion modeling for heavy gas such as carbon dioxide is considerably different from natural gas. The set up for modeling simulations is more challenging than conventional natural gas pipeline for several reasons, such as the differences in thermodynamics that must be considered. Moreover, when the carbon dioxide is transported in dense or liquid phase, the rapid phase changing, and possible consequent formation of solids should be considered. Finally, the equation of state required for accurate prediction of parameters is generally different than the ones applicable for natural gas. The main scope of this comprehensive review is to identify the most important parameters, critical events, suitable models, and identification of dispersion modeling issues. An extensive literature review of experiments conducted in the last ten years has been developed, experimental data, integral and simplified model, as well as CFD modeling issues has been identified and reported in the work proposed to highlight the advances and the gaps that could need further research activities.

Risks and safety of co2 transport via pipeline: A review of risk analysis and modeling approaches for accidental releases

Vitali M.
Writing – Original Draft Preparation
;
Corvaro F.
Membro del Collaboration Group
;
Marchetti B.
Writing – Review & Editing
;
2021-01-01

Abstract

Carbon capture and storage is considered an effective mitigation strategy to reduce the most challenging emissions from heavy industries and gas processing. The safe transport of carbon dioxide via pipelines is an important aspect for developing large-scale Carbon Capture and Storage projects. Dispersion modeling for heavy gas such as carbon dioxide is considerably different from natural gas. The set up for modeling simulations is more challenging than conventional natural gas pipeline for several reasons, such as the differences in thermodynamics that must be considered. Moreover, when the carbon dioxide is transported in dense or liquid phase, the rapid phase changing, and possible consequent formation of solids should be considered. Finally, the equation of state required for accurate prediction of parameters is generally different than the ones applicable for natural gas. The main scope of this comprehensive review is to identify the most important parameters, critical events, suitable models, and identification of dispersion modeling issues. An extensive literature review of experiments conducted in the last ten years has been developed, experimental data, integral and simplified model, as well as CFD modeling issues has been identified and reported in the work proposed to highlight the advances and the gaps that could need further research activities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/35851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact