Do recency processes associated with repetitive sensorimotor events modulate the magnitude and functional coupling of brain rhythmicity in human temporal cortex? Intracranial stereo electroencephalographic activity (SEEG; 256 Hz sampling rate) was recorded from hippocampus, and inferior (BA20) and middle (BA21) temporal cortex in four epilepsy patients. The repetitive events were represented by predicted imperative somatosensory stimuli (CNV paradigm) triggering hand movements ('repetitive visuomotor') or counting ('repetitive counting'). The non-repetitive events were 'rare' (P3 paradigm) somatosensory stimuli triggering hand movements ('non-repetitive visuomotor') or counting ('non-repetitive counting'). Brain rhythmicity was indexed by event-related desynchronization/synchronization (ERD/ERS) of SEEG data, whereas the functional coupling was evaluated by spectral SEEG coherence between pairs of the mentioned areas. The frequency bands of interest were theta (4-8 Hz), alpha (8-12 Hz), beta (14-30 Hz), and gamma (32-46 Hz). Compared to the non-repetitive events, the 'repetitive visuomotor' events showed a significant beta and gamma ERS in the hippocampus and a significant theta ERD in the inferior temporal cortex. Furthermore, the 'repetitive visuomotor' events induced a task-specific significant gamma coherence among the examined areas. These results suggest that recency processes do modulate the magnitude and functional coupling of brain rhythmicity (especially gamma) in the human temporal cortex.

Synchronization of gamma oscillations increases functional connectivity of human hippocampus and inferior-middle temporal cortex during repetitive visuomotor events

Vecchio F.;
2004-01-01

Abstract

Do recency processes associated with repetitive sensorimotor events modulate the magnitude and functional coupling of brain rhythmicity in human temporal cortex? Intracranial stereo electroencephalographic activity (SEEG; 256 Hz sampling rate) was recorded from hippocampus, and inferior (BA20) and middle (BA21) temporal cortex in four epilepsy patients. The repetitive events were represented by predicted imperative somatosensory stimuli (CNV paradigm) triggering hand movements ('repetitive visuomotor') or counting ('repetitive counting'). The non-repetitive events were 'rare' (P3 paradigm) somatosensory stimuli triggering hand movements ('non-repetitive visuomotor') or counting ('non-repetitive counting'). Brain rhythmicity was indexed by event-related desynchronization/synchronization (ERD/ERS) of SEEG data, whereas the functional coupling was evaluated by spectral SEEG coherence between pairs of the mentioned areas. The frequency bands of interest were theta (4-8 Hz), alpha (8-12 Hz), beta (14-30 Hz), and gamma (32-46 Hz). Compared to the non-repetitive events, the 'repetitive visuomotor' events showed a significant beta and gamma ERS in the hippocampus and a significant theta ERD in the inferior temporal cortex. Furthermore, the 'repetitive visuomotor' events induced a task-specific significant gamma coherence among the examined areas. These results suggest that recency processes do modulate the magnitude and functional coupling of brain rhythmicity (especially gamma) in the human temporal cortex.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/36438
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact