Hot recycling of reclaimed asphalt pavement (RAP) into new hot-mix asphalt (HMA) is a complex process that must be precisely calibrated in the asphalt plants. In particular, temperature is a key parameter that, if inadequately set, can affect the final mix performance as it influences the RAP binder mobilization rate and the severity of bitumen short-term aging. The present paper aims at evaluating the effect of HMA production temperature on the behavior of mixtures including 50% of RAP and two types of rejuvenating agents. In particular, volumetric, mechanical, chemical, and rheological properties of the mixes and binder-aggregate adhesion have been investigated on the HMA produced in the laboratory at 140 °C or 170 °C. The results showed that the adoption of a lower production temperature did not significantly influence the air voids content in the mix, but determined a less stiff, brittle and cracking-prone behavior. Moreover, the decrease of the HMA production temperature was profitable for the increase of bitumen-aggregate adhesion.

Influence of the Hot-Mix Asphalt Production Temperature on the Effectiveness of the Reclaimed Asphalt Rejuvenation Process

Bocci E.
;
2023-01-01

Abstract

Hot recycling of reclaimed asphalt pavement (RAP) into new hot-mix asphalt (HMA) is a complex process that must be precisely calibrated in the asphalt plants. In particular, temperature is a key parameter that, if inadequately set, can affect the final mix performance as it influences the RAP binder mobilization rate and the severity of bitumen short-term aging. The present paper aims at evaluating the effect of HMA production temperature on the behavior of mixtures including 50% of RAP and two types of rejuvenating agents. In particular, volumetric, mechanical, chemical, and rheological properties of the mixes and binder-aggregate adhesion have been investigated on the HMA produced in the laboratory at 140 °C or 170 °C. The results showed that the adoption of a lower production temperature did not significantly influence the air voids content in the mix, but determined a less stiff, brittle and cracking-prone behavior. Moreover, the decrease of the HMA production temperature was profitable for the increase of bitumen-aggregate adhesion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/40116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact