The present paper aims to investigate the environmental impacts of a real municipal solid waste management facility operating in Italy including two power units, i.e., a combined heat and power system and an internal combustion engine, fed by the biogas produced from anaerobic digestion and waste disposal in sanitary landfill. The Life Cycle Assessment study is carried out in Simapro 9.1.1.7 and, in addition to the base case scenario, the implementation of additional renewable energy and circular economy solutions is evaluated. More precisely a PV plant on the roof of the anaerobic digesters section and the use of plastic and paper residues in a gasification process for additional heat and power production are considered. The main outcomes of the simulations demonstrate the following: (i) the benefits in terms of energy and fuel savings provided by the two power units; (ii) the environmental impact reduction due to the compost obtained from the anaerobic digestion of the organic waste as potential fertilizer; (iii) a potential power capacity of 2 MW through the gasification of the plastic and paper residues. With reference to the latter, despite bringing an increase of the carbon emissions (+48%) compared to the base case, it could contribute to reach higher environmental standards for MSW composting facilities.

Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration

Biancini, Giovanni;Marchetti, Barbara;Cioccolanti, Luca
;
Moglie, Matteo
2022-01-01

Abstract

The present paper aims to investigate the environmental impacts of a real municipal solid waste management facility operating in Italy including two power units, i.e., a combined heat and power system and an internal combustion engine, fed by the biogas produced from anaerobic digestion and waste disposal in sanitary landfill. The Life Cycle Assessment study is carried out in Simapro 9.1.1.7 and, in addition to the base case scenario, the implementation of additional renewable energy and circular economy solutions is evaluated. More precisely a PV plant on the roof of the anaerobic digesters section and the use of plastic and paper residues in a gasification process for additional heat and power production are considered. The main outcomes of the simulations demonstrate the following: (i) the benefits in terms of energy and fuel savings provided by the two power units; (ii) the environmental impact reduction due to the compost obtained from the anaerobic digestion of the organic waste as potential fertilizer; (iii) a potential power capacity of 2 MW through the gasification of the plastic and paper residues. With reference to the latter, despite bringing an increase of the carbon emissions (+48%) compared to the base case, it could contribute to reach higher environmental standards for MSW composting facilities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/41695
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact