Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by various motor symptoms including balance and gait impairment. Several studies have shown that physiotherapy, cueing techniques, treadmill training, and cognitive movement strategies are useful in improving balance and gait in patients with PD. Devices employing virtual reality (VR) have been shown to be promising in neurorehabilitation as they can provide the patients with multisensory stimulation creating a realistic environment and improve the motivation and the adhesion of patients to the rehabilitation program. This preliminary study is aimed at testing the efficacy and feasibility of gait training based on the computer-assisted virtual reality environment (CAREN) in a sample of PD. Methods: In this preliminary study, 22 outpatients affected by PD who attended the Behavioral and Robotic Neurorehab Laboratory of the IRCCS Neurolesi between August 2017 and October 2018 were enrolled. All PD patients underwent 20 conventional physiotherapy sessions followed by 3-month of rest. Then, the patients were provided with 20 sessions of CAREN training. Gait and balance performances were rated before, after each training protocol, and 3 months later. Gait analysis was also performed before and after CAREN training. Results: All patients completed both of the rehabilitation trainings without any adverse event. All considered scales improved significantly at the end of both rehabilitation treatments. However, patients presented with a greater clinical improvement after the CAREN training, compared with conventional physiotherapy. In particular, patients walked faster and with more stability, with wider, longer steps. Conclusions: Even though further neurophysiological details are required to identify the patients who may benefit from CAREN training, our findings suggest that this innovative device is an effective and feasible tool to train balance and gait in patients with PD.
Improving motor performance in Parkinson's disease: a preliminary study on the promising use of the computer assisted virtual reality environment (CAREN)
Bramanti, Placido;
2020-01-01
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by various motor symptoms including balance and gait impairment. Several studies have shown that physiotherapy, cueing techniques, treadmill training, and cognitive movement strategies are useful in improving balance and gait in patients with PD. Devices employing virtual reality (VR) have been shown to be promising in neurorehabilitation as they can provide the patients with multisensory stimulation creating a realistic environment and improve the motivation and the adhesion of patients to the rehabilitation program. This preliminary study is aimed at testing the efficacy and feasibility of gait training based on the computer-assisted virtual reality environment (CAREN) in a sample of PD. Methods: In this preliminary study, 22 outpatients affected by PD who attended the Behavioral and Robotic Neurorehab Laboratory of the IRCCS Neurolesi between August 2017 and October 2018 were enrolled. All PD patients underwent 20 conventional physiotherapy sessions followed by 3-month of rest. Then, the patients were provided with 20 sessions of CAREN training. Gait and balance performances were rated before, after each training protocol, and 3 months later. Gait analysis was also performed before and after CAREN training. Results: All patients completed both of the rehabilitation trainings without any adverse event. All considered scales improved significantly at the end of both rehabilitation treatments. However, patients presented with a greater clinical improvement after the CAREN training, compared with conventional physiotherapy. In particular, patients walked faster and with more stability, with wider, longer steps. Conclusions: Even though further neurophysiological details are required to identify the patients who may benefit from CAREN training, our findings suggest that this innovative device is an effective and feasible tool to train balance and gait in patients with PD.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.