Among the different waste-to-energy solutions, gasification is considered a promising option and an alternative to landfilling of residual municipal solid waste (RMSW). Therefore, the potential of RMSW air gasification in combination with three different power cycles for district cooling and heating applications is investigated. The model of a fluidized bed air gasifier developed in Aspen Plus is integrated with the models of steam turbine (ST), organic Rankine cycle (ORC), and supercritical CO2 (sCO2) Brayton cycle power plants for the combined cooling, heating, and power production in district networks. The results of the numerical study show that the ST power plant provides higher electrical power compared to the other systems, while sCO2 exhibits better thermal power and the maxima combined energy conversion efficiency. In between, ORCs prove to be a reliable and flexible solution for varying RMSW compositions and temperature levels of the district network. The size of the district network strongly varies with scenarios and in the best case, more than 1,400 residential buildings can be connected to the trigeneration plant considering 20 ktons/year of RMSW input to the gasifier.

Comparative study of steam, organic Rankine cycle and supercritical CO2 power plants integrated with residual municipal solid waste gasification for district heating and cooling

Biancini, Giovanni;Cioccolanti, Luca
;
Moglie, Matteo
2024-01-01

Abstract

Among the different waste-to-energy solutions, gasification is considered a promising option and an alternative to landfilling of residual municipal solid waste (RMSW). Therefore, the potential of RMSW air gasification in combination with three different power cycles for district cooling and heating applications is investigated. The model of a fluidized bed air gasifier developed in Aspen Plus is integrated with the models of steam turbine (ST), organic Rankine cycle (ORC), and supercritical CO2 (sCO2) Brayton cycle power plants for the combined cooling, heating, and power production in district networks. The results of the numerical study show that the ST power plant provides higher electrical power compared to the other systems, while sCO2 exhibits better thermal power and the maxima combined energy conversion efficiency. In between, ORCs prove to be a reliable and flexible solution for varying RMSW compositions and temperature levels of the district network. The size of the district network strongly varies with scenarios and in the best case, more than 1,400 residential buildings can be connected to the trigeneration plant considering 20 ktons/year of RMSW input to the gasifier.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/49255
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact