Purpose - The purpose of this paper is to investigate a method for comparing the scanning and reproducing accuracy of highly shaped objects like plaster casts used in dentistry. Design/methodology/approach - Theoretical considerations on errors introduced by the scanning systems and subsequent point clouds data elaboration have led to a method to estimate the accuracy of the whole process. Suitable indices have been chosen and computed at each stage. As a final result, the overall chain, scanning and reproducing systems can be assessed. In order to validate the proposed method casts have been scanned by means of commercial systems and then reproduced by using different rapid prototyping technologies, materials and parameters. Error indices have been computed and reported. Findings - Since it is not possible to define reliable and meaningful reference models for non-standard shapes, an absolute accuracy value for the scanning process cannot be stated. Anyway the proposed method, thanks to relative performance indices, allows the comparison of different acquisition systems and the evaluation of the most performing manufacturing chain. Practical implications - The study provides a method to assess the relative performance between commercial systems both in scanning and reproducing stage. Originality/value - In literature, some studies on the accuracy of scanning devices have been found but they are based on standard geometrical features. In this paper, the problem of complex shapes in absence of reference model is addressed instead.
A method for performance evaluation of RE/RP systems in dentistry
RAFFAELI, ROBERTO;
2010-01-01
Abstract
Purpose - The purpose of this paper is to investigate a method for comparing the scanning and reproducing accuracy of highly shaped objects like plaster casts used in dentistry. Design/methodology/approach - Theoretical considerations on errors introduced by the scanning systems and subsequent point clouds data elaboration have led to a method to estimate the accuracy of the whole process. Suitable indices have been chosen and computed at each stage. As a final result, the overall chain, scanning and reproducing systems can be assessed. In order to validate the proposed method casts have been scanned by means of commercial systems and then reproduced by using different rapid prototyping technologies, materials and parameters. Error indices have been computed and reported. Findings - Since it is not possible to define reliable and meaningful reference models for non-standard shapes, an absolute accuracy value for the scanning process cannot be stated. Anyway the proposed method, thanks to relative performance indices, allows the comparison of different acquisition systems and the evaluation of the most performing manufacturing chain. Practical implications - The study provides a method to assess the relative performance between commercial systems both in scanning and reproducing stage. Originality/value - In literature, some studies on the accuracy of scanning devices have been found but they are based on standard geometrical features. In this paper, the problem of complex shapes in absence of reference model is addressed instead.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.