The continuous monitoring of cement-based structures and infrastructures is fundamental to optimize their service life and reduce maintenance costs. In the framework of the EnDurCrete project (GA no. 760639), a remote monitoring system based on electrical impedance measurements was developed. Electrical impedance is measured according to the Wenner’s method, using 4-electrode arrays embedded in concrete during casting, selecting alternating current as excitation, to avoid the polarization of both electrode/material interface and of material itself. With this measurement, it is possible to promptly identify events related to contaminants ingress or damages (e.g. cracks formation). Conductive additions are included in some elements to enhance signal-to-noise ratio, as well as the self-sensing properties of concrete. Specifically, a distributed sensor network was implemented, consisting of measurement nodes installed in the elements to be monitored, then connected to a central hub (RS-232 protocol). Nodes are realized with an embedded unit for electrical impedance measurements (EVAL-AD5940BIOZ board with AD5940 chip, by Analog Device) and a digital thermometer (DS18B20 by Maxim Integrated), enclosed in cabinets filled with an IP68 gel against moist-related problems. Data are available on a Cloud through Wi-Fi network or LTE modem, hence can be accessed remotely via a use-friendly multi-platform interface.

Continuous monitoring of the health status of cement-based structures: electrical impedance measurements and remote monitoring solutions

Cosoli G
;
2021-01-01

Abstract

The continuous monitoring of cement-based structures and infrastructures is fundamental to optimize their service life and reduce maintenance costs. In the framework of the EnDurCrete project (GA no. 760639), a remote monitoring system based on electrical impedance measurements was developed. Electrical impedance is measured according to the Wenner’s method, using 4-electrode arrays embedded in concrete during casting, selecting alternating current as excitation, to avoid the polarization of both electrode/material interface and of material itself. With this measurement, it is possible to promptly identify events related to contaminants ingress or damages (e.g. cracks formation). Conductive additions are included in some elements to enhance signal-to-noise ratio, as well as the self-sensing properties of concrete. Specifically, a distributed sensor network was implemented, consisting of measurement nodes installed in the elements to be monitored, then connected to a central hub (RS-232 protocol). Nodes are realized with an embedded unit for electrical impedance measurements (EVAL-AD5940BIOZ board with AD5940 chip, by Analog Device) and a digital thermometer (DS18B20 by Maxim Integrated), enclosed in cabinets filled with an IP68 gel against moist-related problems. Data are available on a Cloud through Wi-Fi network or LTE modem, hence can be accessed remotely via a use-friendly multi-platform interface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/58542
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact