In recent years, virtual reality (VR) technologies have become widely used in clinical settings because they offer impressive opportunities for neurorehabilitation of different cognitive deficits. Specifically, virtual environments (VEs) have ideal characteristics for navigational training aimed at rehabilitating spatial memory. A systematic search, following PRISMA guidelines, was carried out to explore the current scenario in neurorehabilitation of spatial memory using virtual reality. The literature on this topic was queried, 5048 papers were screened, and 16 studies were included, covering patients presenting different neuropsychological diseases. Our findings highlight the potential of the navigational task in virtual environments (VEs) for enhancing navigation and orientation abilities in patients with spatial memory disorders. The results are promising and suggest that VR training can facilitate neurorehabilitation, promoting brain plasticity processes. An overview of how VR-based training has been implemented is crucial for using these tools in clinical settings. Hence, in the current manuscript, we have critically debated the structure and the length of training protocols, as well as a different type of exploration through VR devices with different degrees of immersion. Furthermore, we analyzed and highlighted the crucial role played by the selection of the assessment tools.

Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review

Tuena, Cosimo;
2019-01-01

Abstract

In recent years, virtual reality (VR) technologies have become widely used in clinical settings because they offer impressive opportunities for neurorehabilitation of different cognitive deficits. Specifically, virtual environments (VEs) have ideal characteristics for navigational training aimed at rehabilitating spatial memory. A systematic search, following PRISMA guidelines, was carried out to explore the current scenario in neurorehabilitation of spatial memory using virtual reality. The literature on this topic was queried, 5048 papers were screened, and 16 studies were included, covering patients presenting different neuropsychological diseases. Our findings highlight the potential of the navigational task in virtual environments (VEs) for enhancing navigation and orientation abilities in patients with spatial memory disorders. The results are promising and suggest that VR training can facilitate neurorehabilitation, promoting brain plasticity processes. An overview of how VR-based training has been implemented is crucial for using these tools in clinical settings. Hence, in the current manuscript, we have critically debated the structure and the length of training protocols, as well as a different type of exploration through VR devices with different degrees of immersion. Furthermore, we analyzed and highlighted the crucial role played by the selection of the assessment tools.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/61243
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? ND
social impact