Cardiovascular and neurological diseases are a major cause of mortality and morbidity worldwide. Such diseases require careful monitoring to effectively manage their progression. Artificial intelligence (AI) offers valuable tools for this purpose through its ability to analyse data and identify predictive patterns. This review evaluated the application of AI in cardiac and neurological diseases for their clinical impact on the general population. We reviewed studies on the application of AI in the neurological and cardiological fields. Our search was performed on the PubMed, Web of Science, Embase and Cochrane library databases. Of the initial 5862 studies, 23 studies met the inclusion criteria. The studies showed that the most commonly used algorithms in these clinical fields are Random Forest and Artificial Neural Network, followed by logistic regression and Support-Vector Machines. In addition, an ECG-AI algorithm based on convolutional neural networks has been developed and has been widely used in several studies for the detection of atrial fibrillation with good accuracy. AI has great potential to support physicians in interpretation, diagnosis, risk assessment and disease management.

Artificial Intelligence and Heart-Brain Connections: A Narrative Review on Algorithms Utilization in Clinical Practice

Garofano, Marina;Bramanti, Placido;
2024-01-01

Abstract

Cardiovascular and neurological diseases are a major cause of mortality and morbidity worldwide. Such diseases require careful monitoring to effectively manage their progression. Artificial intelligence (AI) offers valuable tools for this purpose through its ability to analyse data and identify predictive patterns. This review evaluated the application of AI in cardiac and neurological diseases for their clinical impact on the general population. We reviewed studies on the application of AI in the neurological and cardiological fields. Our search was performed on the PubMed, Web of Science, Embase and Cochrane library databases. Of the initial 5862 studies, 23 studies met the inclusion criteria. The studies showed that the most commonly used algorithms in these clinical fields are Random Forest and Artificial Neural Network, followed by logistic regression and Support-Vector Machines. In addition, an ECG-AI algorithm based on convolutional neural networks has been developed and has been widely used in several studies for the detection of atrial fibrillation with good accuracy. AI has great potential to support physicians in interpretation, diagnosis, risk assessment and disease management.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/65921
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact