The social amoeba, Dictyostelium discoideum, produces a multicellular fruiting body and has become a model system for cell-cell interactions such as signalling, adhesion and development. However, unlike most multicellular organisms, it forms by aggregation of cells and, in the laboratory, forms genetic chimeras where there may be competition among clones. Here we show that chimera formation is also likely in nature, because different clones commonly co-occur on a very small scale. This suggests that D. discoideum will likely have evolved strategies for competing in chimeras, and that the function of some developmental genes will be competitive. Natural chimerism also makes D. discoideum a good model organism for the investigation of issues relating to coexistence and conflict between cells.
Co-occurrence in nature of different clones of the social amoeba, Dictyostelium discoideum
Fortunato A.;
2003-01-01
Abstract
The social amoeba, Dictyostelium discoideum, produces a multicellular fruiting body and has become a model system for cell-cell interactions such as signalling, adhesion and development. However, unlike most multicellular organisms, it forms by aggregation of cells and, in the laboratory, forms genetic chimeras where there may be competition among clones. Here we show that chimera formation is also likely in nature, because different clones commonly co-occur on a very small scale. This suggests that D. discoideum will likely have evolved strategies for competing in chimeras, and that the function of some developmental genes will be competitive. Natural chimerism also makes D. discoideum a good model organism for the investigation of issues relating to coexistence and conflict between cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.