Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiologists. Typically, these systems are trained using lesion annotations. However, lesion annotations are expensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invisible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI and derived parameter maps using convolutional neural networks and subsequently, combined with clinical features by a multi-classifier support vector machine scheme. The output of PCF is a probability value that indicates whether a patient is harboring clinically significant PCa (Gleason score ≥3+4) or not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis or as a triage tool to identify low-risk patients who do not require a clinical read.

Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework

Antonelli, Michela;
2021-01-01

Abstract

Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiologists. Typically, these systems are trained using lesion annotations. However, lesion annotations are expensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invisible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI and derived parameter maps using convolutional neural networks and subsequently, combined with clinical features by a multi-classifier support vector machine scheme. The output of PCF is a probability value that indicates whether a patient is harboring clinically significant PCa (Gleason score ≥3+4) or not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis or as a triage tool to identify low-risk patients who do not require a clinical read.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/66698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact