Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure–function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy.

Correlative imaging integrates electrophysiology with three-dimensional murine heart reconstruction to reveal electrical coupling between cell types

Roberto Piersanti;
2025-01-01

Abstract

Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure–function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/77300
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact