Platelets have long been known to be critically involved in hemostasis and thrombosis. However, platelets are also recognized as metabolically active cells that require well-regulated mitochondrial function to support their multiple functions in hemostasis, thrombosis, and inflammation. Mitochondrial activity has also recently been shown to play a crucial role in determining platelet activation, survival, and pro-inflammatory potential. A key nexus in these processes is the mitochondrial permeability transition pore (mPTP), a high-conductance channel in the inner mitochondrial membrane. Sustained mPTP opening triggers mitochondrial depolarization, the cessation of ATP synthesis, osmotic swelling, and, finally, platelet dysfunction or clearance. However, its transient opening might play physiological signaling roles. This review summarizes the current understanding of the molecular components and regulatory factors governing the platelet mPTP, explores its physiological and pathological relevance, and evaluates its potential as a therapeutic target in cardiovascular disease, inflammation, cancer, and potentially neurodegenerative diseases. We also highlight the ongoing challenges and crucial future directions in deciphering the complexities of platelet mitochondrial dynamics and mPTP functions.
The Mitochondrial Permeability Transition Pore in Platelets: Mechanisms, Physiological Roles, and Therapeutic Perspectives
Barbieri, Silvia Stella
2025-01-01
Abstract
Platelets have long been known to be critically involved in hemostasis and thrombosis. However, platelets are also recognized as metabolically active cells that require well-regulated mitochondrial function to support their multiple functions in hemostasis, thrombosis, and inflammation. Mitochondrial activity has also recently been shown to play a crucial role in determining platelet activation, survival, and pro-inflammatory potential. A key nexus in these processes is the mitochondrial permeability transition pore (mPTP), a high-conductance channel in the inner mitochondrial membrane. Sustained mPTP opening triggers mitochondrial depolarization, the cessation of ATP synthesis, osmotic swelling, and, finally, platelet dysfunction or clearance. However, its transient opening might play physiological signaling roles. This review summarizes the current understanding of the molecular components and regulatory factors governing the platelet mPTP, explores its physiological and pathological relevance, and evaluates its potential as a therapeutic target in cardiovascular disease, inflammation, cancer, and potentially neurodegenerative diseases. We also highlight the ongoing challenges and crucial future directions in deciphering the complexities of platelet mitochondrial dynamics and mPTP functions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


