Moving from the hypothesis that aging processes modulate brain connectivity networks, 170 healthy elderly volunteers were submitted to EEG recordings in order to define age-related normative limits. Graph theory functions were applied to exact low-resolution electromagnetic tomography on cortical sources in order to evaluate the small-world parameter as a representative model of network architecture. The analyses were carried out in the whole brain—as well as for the left and the right hemispheres separately—and in three specific resting state subnetworks defined as follows: attentional network (AN), frontal network (FN), and default mode network (DMN) in the EEG frequency bands (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma). To evaluate the stability of the investigated parameters, a subgroup of 32 subjects underwent three separate EEG recording sessions in identical environmental conditions after a few days interval. Results showed that the whole right/left hemispheric evaluation did not present side differences, but when individual subnetworks were considered, AN and DMN presented in general higher SW in low (delta and/or theta) and high (gamma) frequency bands in the left hemisphere, while for FN, the alpha 1 band was lower in the left with respect to the right hemisphere. It was also evident the test-retest reliability and reproducibility of the present methodology when carried out in clinically stable subjects. Evidences from the present study suggest that graph theory represents a reliable method to address brain connectivity patterns from EEG data and is particularly suitable to study the physiological impact of aging on brain functional connectivity networks.

Human brain networks: a graph theoretical analysis of cortical connectivity normative database from EEG data in healthy elderly subjects

Vecchio F.
;
Miraglia F.;
2020-01-01

Abstract

Moving from the hypothesis that aging processes modulate brain connectivity networks, 170 healthy elderly volunteers were submitted to EEG recordings in order to define age-related normative limits. Graph theory functions were applied to exact low-resolution electromagnetic tomography on cortical sources in order to evaluate the small-world parameter as a representative model of network architecture. The analyses were carried out in the whole brain—as well as for the left and the right hemispheres separately—and in three specific resting state subnetworks defined as follows: attentional network (AN), frontal network (FN), and default mode network (DMN) in the EEG frequency bands (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma). To evaluate the stability of the investigated parameters, a subgroup of 32 subjects underwent three separate EEG recording sessions in identical environmental conditions after a few days interval. Results showed that the whole right/left hemispheric evaluation did not present side differences, but when individual subnetworks were considered, AN and DMN presented in general higher SW in low (delta and/or theta) and high (gamma) frequency bands in the left hemisphere, while for FN, the alpha 1 band was lower in the left with respect to the right hemisphere. It was also evident the test-retest reliability and reproducibility of the present methodology when carried out in clinically stable subjects. Evidences from the present study suggest that graph theory represents a reliable method to address brain connectivity patterns from EEG data and is particularly suitable to study the physiological impact of aging on brain functional connectivity networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11389/36429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact